The KDE procedure performs either univariate or bivariate kernel density estimation. Statistical density estimation involves approximating a hypothesized probability density function from observed ...
We consider the Parzen-Rosenblatt kernel density estimate on Rd with data-dependent smoothing factor. Sufficient conditions on the asymptotic behavior of the smoothing factor are given under which the ...
Density estimation is a fundamental component in statistical analysis, aiming to infer the probability distribution of a random variable from a finite sample without imposing restrictive parametric ...
We introduce a consistent estimator for the homology (an algebraic structure representing connected components and cycles) of level sets of both density and regression functions. Our method is based ...
A kernel density curve may follow the shape of the distribution more closely. To construct a normal kernel density curve, one parameter is required: the bandwidth .The value of determines the degree ...
Gordon Lee et al introduce a data-driven and model-agnostic approach for computing conditional expectations. The new method combines classical techniques with machine learning methods, in particular ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results